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Abstract

A search is presented for the production of both first- and second- generation scalar
leptoquarks with a final state of either two electrons and one jet or two muons and one
jet. A data sample of proton-proton collisions at center-of-mass energy

√
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recorded with the CMS detector corresponds to an integrated luminosity of 19.6 fb−1.
Upper limits are set on both the first- and second- generation leptoquark production
cross sections as functions of the leptoquark mass and the leptoquark couplings to
a lepton and a quark. Results are compared with theoretical predictions to obtain
lower limits on the leptoquark mass. At 95% confidence level, single production of
first-generation leptoquarks with a coupling and branching fraction of 1.0 is excluded
for masses below 1730 GeV, and second-generation leptoquarks with a coupling and
branching fraction of 1.0 is excluded for masses below 530 GeV. These are the best
overall limits on the production of first-generation leptoquarks to date.
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1 Introduction
Leptoquarks (LQ) are hypothetical color-triplet bosons with spin 0 (scalar LQ) or 1 (vector LQ),
which are predicted by many extensions of the standard model (SM) of particle physics, such
as Grand Unified Theories [1–8], technicolor schemes [9–11], and composite models [12]. They
carry fractional electric charge (±1/3 for LQs considered in this paper) and both baryon and
lepton numbers and thus couple to a lepton and a quark. Existing experimental limits on flavor
changing neutral currents and other rare processes disfavor leptoquarks that couple to a quark
and lepton of more than one SM generation [13, 14]. A discussion of the phenomenology of
LQs at the LHC can be found elsewhere [15].

The production and decay of LQs at proton-proton colliders are characterized by the mass of
the LQ particle, MLQ; its decay branching fraction into a charged lepton and a quark, usually
denoted as β; and the Yukawa coupling λ at the LQ-lepton-quark vertex. At hadron colliders,
leptoquarks could be produced in pairs via gluon fusion and quark anti-quark annihilation,
and singly via quark-gluon fusion. Pair production of LQs does not depend on λ, while single
production does, and thus the sensitivity of single LQ searches depends on λ. At lower masses,
the cross sections for pair production are greater than those for single production. Single pro-
duction cross sections decrease more slowly with mass, exceeding pair production at an order
of 1 TeV for λ = 0.6.

Several experiments have searched for LQs. The H1 collaboration has produced limits on var-
ious singly produced LQ types: the one to which to compare this search is the LQ called SR

0 in
Ref. [16], for which they place a limit at 500 GeV, assuming λ = 1.0 and β = 1.0. The D0 collab-
oration has produced limits on singly produced scalar LQs of 274 GeV, again assuming λ = 1.0
and β = 1.0 [17]. Limits from pair production of leptoquarks exclude leptoquark masses below
1010 GeV for the first generation and 1080 GeV for the second generation, for β = 1.0 [18].

The main single leptoquark production mode at the LHC is the resonant diagram shown in
Fig. 1. However, significant contributions are made by the diagrams with non-resonant com-
ponents shown in Fig. 2. These contributions increase with both the LQ mass and coupling;
the invariant mass distribution of a first generation LQ, of mass MLQ = 1 TeV and coupling
λ = 1.0, possesses a tail extending to very low masses that is comparable to the peak in magni-
tude. The reconstructed shape of the resonance peak itself is not strongly affected by λ.

Also, interference with the qg → qZ/γ∗ → q`+`− SM process can occur at dilepton masses in
the vicinity of the Z boson mass peak and at lower energies. Treatments for this interference
region and the above-described low-mass off-shell tail of the lepton-jet mass distribution are
detailed in Section 5.

The final-state event signatures from the decays of singly produced LQs can be classified as
either that of two charged leptons and a jet, where the LQ decays to a charged lepton and a
quark, or of a charged lepton, missing transverse energy, and a jet, where the LQ decays into a
neutrino and a quark. The two signatures have branching fractions of β and 1− β, respectively.
For this study, and for SR

0 type LQs, β is 1.0, disregarding LQ decays to a neutrino and a quark.
Because the parton distribution functions (PDF) of the proton are dominated by the u and d
quarks, the single production of LQs of second and third generation is suppressed.

The charged leptons can be electrons, muons, or taus, corresponding to the three generations of
LQs. In this paper two distinct signatures with charged leptons in the final state are considered:
one with two high transverse momentum (pT) electrons and one high-pT jet (denoted as eej),
and the other with two high–pT muons and one high-pT jet (denoted as µµj).
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Figure 1: The s-channel resonant LQ production diagram.
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Figure 2: The t-channel LQ production diagrams with non-resonant components. The diagram
in (b) is completely non-resonant.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter, each composed of a barrel and two endcap sections. Extensive forward
calorimetry complements the coverage provided by the barrel and endcap detectors. Muons
are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the
solenoid.

The ECAL energy resolution for electrons with ET ≈ 45 GeV from Z → ee decays is better
than 2% in the central pseudorapidity region of the ECAL barrel (|η| < 0.8), and is between
2% and 5% elsewhere. For low-bremsstrahlung electrons, where 94% or more of their energy
is contained within a 3× 3 array of crystals, the energy resolution improves to 1.5% for |η| <
0.8 [19].

Muons are measured in the pseudorapidity range |η| < 2.4 with detection planes made using
three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching
muon tracks derived from these measurements to tracks measured in the silicon tracker results
in a relative pT resolution for muons with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and
better than 6% in the endcaps; the pT resolution in the barrel is better than 10% for muons with
pT up to 1 TeV [20].

The first level of the CMS trigger system, composed of custom hardware processors, uses in-
formation from the calorimeters and muon detectors to select the most interesting events. The
high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz
to around 400 Hz, before data storage.
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The particle-flow event algorithm reconstructs and identifies each individual particle with
an optimized combination of information from the various elements of the CMS detector.
The energy of photons is directly obtained from the ECAL measurement, corrected for zero-
suppression effects. The energy of electrons is determined from a combination of the electron
momentum at the primary interaction vertex as determined by the tracker, the energy of the
corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially com-
patible with originating from the electron track. The energy of muons is obtained from the
curvature of the corresponding track. The energy of charged hadrons is determined from a
combination of their momentum measured in the tracker and the matching ECAL and HCAL
energy deposits, corrected for zero-suppression effects and for the response function of the
calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the
corresponding corrected ECAL and HCAL energy.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in [21].

3 Data and simulation samples
The data were collected during the 8 TeV pp run in 2012 at the CERN LHC and correspond to
an integrated luminosity of 19.6 fb−1. In the eej channel, events are selected using a trigger
that requires two electrons with pT > 33 GeV and |η| < 2.4 and in the µµj channel, events are
selected using a trigger that requires one muon with pT > 40 GeV and |η| < 2.1.

Simulated samples for the signal processes are generated for a range of leptoquark mass hy-
potheses between 300 and 3300 GeV and coupling hypotheses between 0.4 and 1.0 in the eej
channel, and a range of leptoquark mass hypotheses between 300 and 1800 GeV and a cou-
pling hypothesis of 1.0 in the µµj channel. Production of LQs in the µµj channel is suppressed
because of the proton PDF as discussed in Section 1.

The main sources of background are tt, Z/γ∗ + jets, W + jets, diboson (ZZ, ZW, WW) + jets,
single top quark, and QCD multijet production. The tt + jets background shape is estimated
from a study based on data described in Section 6; the simulation sample for the normalization
of the tt+ jets background as well as the samples for the Z/γ∗+ jets and W+ jets backgrounds
are generated with MADGRAPH 5.1 [22]. Single top quark samples (s-, t-channels, and W boson
associated production) are generated with POWHEG 1.0 [23–26] and diboson samples are gen-
erated with PYTHIA (version 6.422) [27] using the Z2 tune [28]. The QCD multijet background
is estimated from data.

For the simulation of signal samples, the CALCHEP [29] generator is used for calculation of the
matrix elements. The signal cross sections are computed at leading order (LO) with CALCHEP
and are listed in Table 3 in the appendix. Blank entries were not considered because of the small
size of the cross section. The resonant cross sections σres are shown in Fig. 3 and are defined by
the kinematics selections given in Section 5.

The PYTHIA and MADGRAPH simulations use the CTEQ6L1 [30] PDF sets, those produced
with CALCHEP use the CTEQ6L PDFs, and the POWHEG simulation uses the CTEQ6m set.
All of the simulations use PYTHIA for the treatment of parton showering, hadronization, and
underlying event effects. For both signal and background simulated samples, the simulation
of the CMS detector is based on the GEANT4 package [31]. All simulated samples include the
effects of extra collisions in a single bunch crossing as well as collisions from nearby bunch
crossings (out-of-time pileup and in-time pileup, respectively). The pileup profiles in simula-
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tion are reweighted to the distributions of the reconstructed vertices per bunch crossing in data
collected by the CMS detector.
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Figure 3: Cross sections for single LQ production, calculated at LO in CALCHEP and scaled by
the acceptance of the requirements described in Section 5, as a function of the LQ mass in GeV.

In the eej channel, the background and signal are rescaled by a uniform trigger efficiency scale
factor of 0.996, which is measured in [32]. In the µµj channel, the background and signal are
rescaled by muon η-dependent efficiency factors of 0.94 (|η| ≤ 0.9), 0.84 (0.9 < |η| ≤ 1.2), and
0.82 (1.2 < |η| ≤ 2.1). An uncertainty of 1% is assigned to these factors to account for variations
during data-taking periods and statistical uncertainties.

4 Event reconstruction
Muons are reconstructed as tracks in the muon system that are “globally” matched to recon-
structed tracks in the tracking system [20]. Muons are required to have pT > 45 GeV and
|η| < 2.1. Additionally, they are required to satisfy a set of criteria that is optimized for high pT;
they are reconstructed as “global” muons with tracks associated to hits from at least two muon
detector planes together with at least one muon chamber hit that is included in the ”global”
track fit [20]. To perform a precise measurement of the pT and to reduce background from
muons from secondary decays in flight, at least eight hits are required in the tracker and at
least one in the pixel detector. To minimize background from muons from cosmic ray back-
grounds, the transverse impact parameter with respect to the primary vertex is required to be
less than 2 mm and the longitudinal distance is less than 5 mm. Muons are required to be
isolated by applying an upper threshold on the relative tracker isolation of 0.1. The relative
tracker isolation is defined as the ratio of the pT of all tracks in the tracker coming from the
same vertex, excluding the muon candidate track, in a cone of ∆R =

√
(∆φ)2 + (∆η)2 = 0.3

(where φ is the azimuthal angle in radians) around the muon candidate track, and the muon
pT.

Electrons are required to have a reconstructed track in the central tracking system that is
matched in η and φ to a cluster of ECAL crystals that has a shape consistent with an elec-
tromagnetic shower. The transverse impact parameter of the track with respect to the primary
vertex is required to be less than 2 mm for electrons in the barrel (|η| < 1.442) and less than 5
mm for electrons in the endcap (|η| > 1.560). Electrons are required to be isolated from recon-
structed tracks other than the matched track in the central tracking system and from additional
energy deposits in the calorimeter. To reject electrons coming from photon conversions within
the tracker material, the reconstructed electron track is required to have hits in all pixel layers.
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Electrons in the analysis have pT > 45 GeV and |η| < 2.1 to match the muon requirements
(excluding the transition region between barrel and endcap detectors, 1.442 < |η| < 1.560).
Selection criteria for electron identification and isolation optimized for high energies are also
applied [32].

Jets are reconstructed with the CMS particle-flow algorithm [33, 34], which measures stable
particles by combining information from all CMS subdetectors. The jet reconstruction algo-
rithm used in this paper is the anti-kT [35, 36] algorithm with a distance parameter 0.5, which
only considers tracks associated to the primary vertex. Jet momentum is determined as the
vectorial sum of all particle momenta in the jet, and is found from simulation to be within 5%
to 10% of the true momentum over the whole pT spectrum and detector acceptance. An off-
set correction is applied to jet energies to take into account the contribution from additional
proton-proton interactions within the same bunch crossing. Jet energy corrections are derived
from simulation, and are confirmed with in situ measurements of the energy balance in dijet
and photon+jet events [37]. Additional selection criteria are applied to each event to remove
spurious jet-like features originating from isolated noise patterns in certain HCAL regions. The
jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to
be compared to about 40%, 12%, and 5% obtained when the calorimeters alone are used for jet
clustering.

Jets are required to have pT > 45 GeV, |η| < 2.4, and an angular separation from leptons of
∆R > 0.3.

5 Event selection
We require that events in both the eej and µµj channels contain at least two leptons and at
least one jet that satisfy the above identification criteria. Additional kinematic requirements
are applied to remove regions in which the trigger and identification criteria are not at plateau
efficiency and to reduce large backgrounds. This creates a basic preselection region: the jet pT
must be larger than 125 GeV, the dilepton invariant mass M`` must be larger than 110 GeV, and
the scalar sum of transverse momenta of objects in the event (ST = pT(`1) + pT(`2) + pT(j1))
is required to exceed 250 GeV, where `1 is the highest pT lepton in the event, `2 is the second-
highest pT lepton, and j1 is the highest pT jet. The two leptons in the events are required to have
opposite charges.

After this initial selection, a final selection is optimized for each channel separately by maxi-
mizing S/

√
S + B, where S is the number of signal events in the simulation passing a given

selection and B is the number of background events in the simulation passing the same se-
lection. We optimize for each LQ mass hypothesis by varying the requirements on M`j and
ST.

As discussed in Section 1, owing to the unique aspects of single LQ decays, two generator
level requirements are applied to the simulated signal samples. The first is M`` > 110 GeV, to
remove LQ decays that are in the Z boson interference region. The second is a requirement on
M`j, defined as the higher of the two possible lepton-jet mass combinations, chosen to remove
the t-channel diagram contributions in the low-mass off-shell region, while preserving most of
the resonant signal. This requirement is set at M`j > 0.67 MLQ for the first-generation studies
and M`j > 0.75 MLQ for the second-generation studies. The thresholds for M`j were chosen
separately for each channel, because of the differences in the distribution shape. The dilepton
invariant mass requirement at the generator level precisely matches the reconstruction level
requirement at the preselection. These two requirements define the resonant region. Cross
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sections at the generator level before and after these requirements are provided in Table 3, in
the appendix.

The eej channel selection after optimization is identical for all couplings. The threshold on ST
starts at 250 GeV for MLQ = 300 GeV and increases linearly until it reaches a plateau value of
900 GeV at MLQ = 1125 GeV. The M`j threshold starts at 200 GeV for MLQ = 300 GeV and
increases linearly until it plateaus at 1900 GeV above MLQ = 2000 GeV. In the µµj channel after
optimization the threshold on ST starts at 300 GeV for MLQ = 300 GeV and increases linearly
until it plateaus at 1000 GeV above MLQ = 1000 GeV. The M`j threshold starts at 200 GeV for
MLQ = 300 GeV and increases linearly until it plateaus at 800 GeV above MLQ = 900 GeV. The
exact threshold values are listed in Tables 4 and 5 in the appendix.

6 Background estimations
The SM processes that mimic the signal signature are Z/γ∗ + jets, tt, single top quark, diboson
+jets, W+ jets, and QCD multijets events where the jets are misidentified as leptons. The dom-
inant contributions come from the former two processes, whereas the other processes provide
minor contributions to the total number of background events.

The contribution from the Z/γ∗+ jets background is estimated with a simulated sample that is
normalized to agree with data at preselection in the Z-enriched region of 80 < M`` < 100 GeV,
where M`` is the dilepton invariant mass. With this selection the data sample (with non-Z/γ∗+
jets simulated samples subtracted) is compared to Z/γ∗ + jets in simulation. The resulting
scale factor, representing the ratio of the measured yield to the predicted yield, is RZ = 0.98±
0.01 (stat) in both the eej and µµj channels. This scale factor is then applied to the simulated
Z/γ∗ + jets sample in the signal region of M`` > 110 GeV. In order to account for possible
mismodeling of the pT(``) spectrum of the Z/γ∗ + jets background sample, where pT(``) is
the scalar sum of the two highest pT leptons in the event, we perform a bin-by-bin rescaling of
yields at preselection and full selection by scale factors measured in an inverted M`` selection
(M`` < 110 GeV). These scale factors differ from unity by 1% to 10%, depending on the pT(``)
bin, and are applied to the Z/γ∗ + jets sample in the signal region of M`` > 110 GeV.

We estimate the tt background with a tt-enriched eµ sample in data, selected using the single
muon trigger. We use a selection that is identical to our signal selection in terms of kinematics
requirements, except that we require at least a single muon and a single electron rather than re-
quiring two same-flavor leptons. The eµ sample is considered to be signal-free, because limits
on flavor changing neutral currents imply that LQ processes do not present a different-flavor
decay topology [13, 14]. The tt background is largely dominant in the eµ sample with respect
to the other backgrounds. The sample is normalized to account for the different branching
fractions of the eµ and ee or µµ final states (B(eµ) = 2 B(ee or µµ)) and the difference in elec-
tron and muon identification and isolation efficiencies, collectively taken to be R(ee or µµ)/eµ, for
the two channels. The sample is also normalized by the ratio of the single-muon trigger effi-
ciency and either the double-electron trigger efficiency or single-muon trigger efficiency in two
muon final states (Rtrig,(ee or µµ)). The overall normalization is taken from simulation and the eµ

sample is taken from data. The eµ sample is then used to estimate the contribution from tt at
preselection and final selection. The number of estimated tt events, Ntt,est, is

Ntt,est = (Neµ,data − Neµ,non-tt sim)×
R(ee or µµ)/eµ Rtrig,(ee or µµ), (1)
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with
Rtrig,ee =

εee

εµ
, (2)

Rtrig,µµ =
1− (1− εµ)2

εµ
= 2− εµ, (3)

where εµ and εee are the single-muon trigger and double-electron trigger efficiencies, respec-
tively, and Neµ,data and Neµ,non-tt sim are the number of events observed in data and in other
backgrounds in the eµ sample, respectively. Rtrig,µµ is the ratio of the efficiency of a single
muon trigger on a dimuon sample over the efficiency on a single muon sample (the numerator
is the likelihood of failure on two muons).

The contribution from QCD multijet processes is determined by a method that makes use of
the fact that neither signal events nor events from other backgrounds produce final states with
same-charge leptons at a significant level. We create four selections, with both opposite-sign
(OS) and same-sign (SS) charge requirements, as well as isolated and non-isolated require-
ments. Electrons in isolated events must pass the isolation criteria optimized for high-energy
electrons [32] and muons are required to have a relative tracker isolation less than 0.1, as dis-
cussed in Section 4. Non-isolated events are those with leptons failing these criteria. The four
selections are as follows,

(
A B
C D

)
=

(
OS+isolated OS+non-isolated
SS+isolated SS+non-isolated

)
. (4)

The shape of the background is taken from the SS region with isolation requirements, and the
normalization is obtained from the ratio between the number of OS events and the number of
SS events in the non-isolated selection. Thus, the number of events, NQCD, est, is estimated by

NQCD, est = rB/D N(data – non-QCD sim)
C , (5)

where N(data – non-QCD sim)
C is the number of events in region C of Eq. (4) and rB/D is the ratio of

the number of events (measured in data with simulated non-QCD backgrounds subtracted) in
regions B and D. The result is that QCD multijet processes account for 2% (1%) of the total SM
background in the eej (µµj) channel.

The contributions of the remaining backgrounds (diboson+jets, W+jets, single top quark) are
small and are determined entirely from simulation.

The preselection level distributions in Mee, ST, and M`j are shown in Figs. 4 and 5 for the
observed data and estimated backgrounds, where they are compared with a signal LQ mass
of 1000 GeV in the eej channel, and with a signal LQ of mass 600 GeV, in the µµj channel. In
all plots the Z/γ∗ + jets prediction is normalized to data and the tt prediction is taken from
the study based on data. Data and background are found to be in agreement. The numbers
of events selected in data and in the backgrounds at each final selection (for each hypothesis
mass) are shown in Tables 6, 7, and 8 in the appendix.

The observed data and background predictions are compared after final selection for λ = 0.4
and a signal LQ mass of 1000 GeV in the eej channel and a signal LQ mass of 600 GeV in the µµj
channel and are shown in Figs. 6 and 7.
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Figure 4: Distributions of Mee (top left), ST (top right), and Mej (bottom) at preselection in the
eej channel. “Other backgrounds” include diboson, W+ jets, and single top quark contribu-
tions. The points represent the data and the stacked histograms show the expected background
contributions. The open histogram shows the prediction for an LQ signal for MLQ = 1000 GeV
and λ = 0.4. The horizontal error bars on the data points represent the bin width. The last bin
includes overflow.
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Figure 5: Distributions of Mµµ (top left), ST (top right), and Mµj (bottom) at preselection in
the µµj channel. “Other backgrounds” include diboson, W+ jets, single top quark, and QCD
multijet contributions. The points represent the data and the stacked histograms show the
expected background contributions. The open histogram shows the prediction for an LQ signal
for MLQ = 600 GeV and λ = 1.0. The horizontal error bars on the data points represent the bin
width. The last bin includes overflow.
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Figure 6: Distributions of ST and Mej at final selection, in the eej channel . The points represent
the data and the stacked histograms show the expected background contributions. The open
histogram shows the prediction for an LQ signal for MLQ = 1000 GeV and λ = 0.4. The
horizontal error bars on the data points represent the bin width. The last bin includes overflow.
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Figure 7: Distributions of ST and Mµj at final selection, in the µµj channel. The points represent
the data and the stacked histograms show the expected background contributions. The open
histogram shows the prediction for an LQ signal for MLQ = 600 GeV and λ = 1.0. The hor-
izontal error bars on the data points represent the bin width. The last bin includes overflow.

7 Systematic uncertainties
The sources of systematic uncertainties considered in this analysis are listed below. To deter-
mine the uncertainties in signal and background, each kinematic quantity listed is varied indi-
vidually according to its uncertainty and the final event yields are re-measured to determine
the variation in the predicted number of background and signal events.

Jet energy scale and resolution uncertainties are estimated by assigning pT- and η-dependent
uncertainties in jet energy corrections as discussed in Ref. [37], and varying the jet pT according
to the magnitude of that uncertainty. The uncertainty in the jet energy resolution is assessed by
modifying the pT difference between the particle level and reconstructed jets by an η-dependent
value between 5% and 30% for most jets [37].

Uncertainties in the charged-lepton momentum scale and resolution also introduce uncertain-
ties in the final event acceptance. An energy scale uncertainty of 0.6% in the ECAL barrel and
1.5% in the ECAL endcap is assigned to electrons [38], and an uncertainty of 10% in both the
ECAL barrel and endcap is applied to the electron energy resolution [38]. There is an uncer-
tainty of 0.6% per electron in reconstruction, identification, and isolation requirements. For
muons, a pT-dependent scale uncertainty of 5% (pT/1 TeV) is applied, as well as a 1–4% pT-
dependent resolution uncertainty [20]. In the case of momentum scale uncertainties the mo-
mentum is directly varied, and in the case of momentum resolution uncertainties the lepton
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momentum is subjected to a Gaussian random smearing within the uncertainty. A 2% per
muon uncertainty in reconstruction, identification, and isolation requirements, as well as a 1%
muon HLT efficiency uncertainty, are assumed as well.

Other important sources of systematic uncertainty are related to the modeling of the back-
grounds in the simulation. The uncertainty in the Z/γ∗ + jets background shape is determined
by using simulated samples with renormalization and factorization scales and matrix-element
parton-shower matching thresholds varied by a factor of two up and down. The scale factors
for the normalization of the Z/γ∗+ jets background are assigned an uncertainty of 0.6% in both
channels and the normalization of the tt background is assigned an uncertainty of 0.5% in both
channels, from the studies in Section 6, with an additional uncertainty of 4% applied to the
tt background normalization in the µµj channel to account for possible signal contamination
from first generation LQs in the control sample (the contamination is extremely small in the
other channel because of the suppressed second generation signal). An uncertainty on Z/γ∗+
jets background from the pT(``) scale factors is assessed by taking the weighted average of the
uncertainties from each pT(``) bin. The estimate of the QCD multijet background from data
has an uncertainty of 15%.

An uncertainty in the modeling of pileup in simulation is determined by varying the number
of simulated pileup interactions up and down by 6% [39], and an uncertainty of 2.6% on the
measured integrated luminosity is applied [40].

Uncertainties in the signal acceptance, the background acceptance, and the cross sections, due
to the PDF choice of 4–10% for signal and 3–9% for background are applied, following the
PDF4LHC recommendations described in Refs. [41, 42].

Finally, a statistical uncertainty associated with the size of the simulated sample is included for
both background and signal.

The systematic uncertainties are listed in Table 1, together with their effects on signal and back-
ground yields, corresponding to the final selection values optimized for MLQ = 600 GeV. The
PDF uncertainty is larger in the µµj channel because of the large uncertainty associated with
the s-quark PDF.

8 Results
The observed data are consistent with the no-signal hypothesis. We set an upper limit on the
leptoquark cross section by using the CLS modified frequentist method [43, 44] with the final
event yields. A log-normal probability function is used to model the systematic uncertainties,
whereas statistical uncertainties are described with gamma distributions with widths deter-
mined according to the number of events simulated or measured in data control regions.

To isolate the limits for resonant LQ production, we apply the resonant requirements at the gen-
erator level on both the lepton+jet mass, M(`, j) > (0.67 or 0.75) MLQ (for the first- or second-
generation LQs, respectively), and on the dilepton mass, M`` > 110 GeV. These requirements
make the limits extracted from data more conservative and are discussed in Section 5. A res-
onant cross section σres is computed with respect to those requirements. Limits are then com-
puted with the reduced sample of simulated signal events and compared to σres.

The 95% confidence level (CL) upper limits on σres β as a function of leptoquark mass are shown
in Fig. 8 together with the resonant cross section predictions for the scalar leptoquark single
production cross section. The uncertainty band on the theoretical cross section prediction cor-
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Table 1: Systematic uncertainties (in %) and their effects on total signal (S) and background (B)
in both channels for MLQ = 600 GeV final selection.

Systematic eej µµj
uncertainty S(%) B(%) S(%) B(%)
Jet energy scale 0.3 1.0 0.7 1.4
Jet energy resolution 0.1 0.3 0.3 0.4
Electron energy scale 0.2 2.1 — —
Electron energy resolution 0.1 0.6 — —
Muon energy scale — — 2.4 3.7
Muon energy resolution — — 0.2 1.1
Electron reco/ID/iso 1.2 0.1 — —
Muon reco/ID/iso — — 2.0 0.1
Trigger — — 1.0 0.1
QCD normalization — 0.0 — 0.1
tt normalization — 0.2 — 1.1
Z/γ∗ + jets normalization — 0.3 — 0.3
Z/γ∗ + jets shape — 5.2 — 5.6
Z/γ∗ + jets pT(``) scale factor — 2.6 — 3.0
PDF 3.5 3.0 3.0 2.8
Pileup 2.5 0.6 2.8 1.9
Integrated luminosity 2.6 0.3 2.6 0.2
Statistical uncertainty 1.3 3.5 1.4 4.3
Total 5.3 8.1 6.05 8.1

responds to uncertainties in the total cross section due to PDF variations with an additional
+70% uncertainty, due to the k factor [45]. The observed limits are listed in Tables 4 and 5 in
the appendix.

First gen. LQ mass (GeV)
500 1000 1500 2000 2500 3000

 (
pb

)
re

s
σ

-610

-510

-410

-310

-210

-110

1

10 Expected 95% CL upper limit

 bandσExpected limit - 2 

 bandσExpected limit - 1 

 = 1.0β = 1.0, λResonant cross section, 

 = 1.0β = 0.8, λResonant cross section, 

 = 1.0β = 0.6, λResonant cross section, 

 = 1.0β = 0.4, λResonant cross section, 

Observed 95% CL upper limit

 (8 TeV)-119.6 fb

CMS

Second gen. LQ mass (GeV)
400 600 800 1000 1200 1400 1600 1800

 (
pb

)
re

s
σ

-610

-510

-410

-310

-210

-110

1

10
Expected 95% CL upper limit

 bandσExpected limit - 2 

 bandσExpected limit - 1 

Observed 95% CL upper limit

 = 1.0β = 1.0, λResonant cross section, 

 (8 TeV)-119.6 fb

CMS

Figure 8: Expected and observed upper limits at 95% CL on first and second generation
leptoquark single production resonant cross section as a function of the leptoquark mass.
First generation limits are shown on the left plot with a resonant region of M`j > 0.66 MLQ,
M`` > 110 GeV and second generation limits are shown on the right plot with a resonant re-
gion of M`j > 0.75 MLQ, M`` > 110 GeV. The uncertainty bands on the observed limit represent
the 68% and 95% confidence intervals. The uncertainty band on the theoretical cross section in-
cludes uncertainties due to PDF variation and the k factor.

By comparing the observed upper limit with the theoretical production cross-section times
branching fraction, we exclude single leptoquark production at 95% CL for LQ masses below
the values given in Table 2.
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Table 2: 95% CL lower limits on scalar LQ masses (β = 1.0).

LQ generation, coupling Excluded mass (GeV)
First gen., λ = 0.4 860
First gen., λ = 0.6 1175
First gen., λ = 0.8 1355
First gen., λ = 1.0 1755

Second gen., λ = 1.0 660

Limits on single production of the SR
0 type LQ from the H1 collaboration exclude LQ production

up to 500 GeV (λ = 1.0) and up to 350 GeV (λ = 0.6) [16].

9 Summary
A search has been performed for the single production of first- and second- generation scalar
leptoquarks in final states with two electrons and a jet or two muons and a jet using a data
set of proton-proton collisions at 8 TeV corresponding to an integrated luminosity of 19.6 fb−1.
The selection criteria are optimized for each leptoquark signal mass hypothesis. The number
of observed candidates for each mass hypothesis agrees with the number of expected standard
model background events. Single production of first-(second-) generation leptoquarks with a
coupling of 1.0 is excluded at 95% confidence level for masses below 1755(660) GeV. These are
the most stringent limits to date for single production. The first-generation limits for couplings
greater than 0.6 are stronger than those from pair production and are the most stringent overall
limits on leptoquark production in the first generation to date.
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10 Appendix
10.1 Signal cross sections

This section contains a table of first- and second-generation LQ cross sections, computed at LO
in CALCHEP and scaled for the resonant selection (Table 3).

Table 3: Signal cross sections calculated at LO in CALCHEP. Resonant cross sections scaled by
the acceptance of the selections described in Section 5 are listed under each corresponding LO
cross section.

MLQ First gen., First gen., First gen., First gen., Second gen.,
(GeV) λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0 λ = 1.0

(pb) (pb) (pb) (pb) (pb)
300 1.04 2.39 4.38 7.12 0.579

0.921 2.08 3.83 6.21 0.468
400 0.291 0.675 1.25 2.06 0.139

0.261 0.601 1.11 1.81 0.11
500 0.102 0.239 0.451 0.755 0.0446

0.0924 0.215 0.4 0.658 0.034
600 0.0413 0.0984 0.189 0.322 0.0176

0.0378 0.0891 0.166 0.278 0.0122
700 0.0186 0.0451 0.088 0.154 0.00807

0.017 0.0404 0.0763 0.128 0.00511
800 0.00904 0.0223 0.0446 0.0797 0.00418

0.00829 0.0198 0.0374 0.0647 0.00229
900 0.00467 0.0118 0.0242 0.0443 0.00237

0.00427 0.0103 0.02 0.0346 0.00109
1000 0.00254 0.00657 0.0139 0.0261 0.00145

0.00228 0.00559 0.0111 0.0188 0.000537
1200 0.00084 0.00234 0.00526 0.0104 0.00064

0.000733 0.00186 0.00378 0.00667 0.000147
1400 0.00032 0.00097 0.00233 0.00485 0.00033

0.000267 0.000705 0.00144 0.00252 4.09e-05
1600 0.00014 0.00045 0.00117 0.00255 0.00019

0.000108 0.000282 0.000577 0.00103 1.24e-05
1800 6e-05 0.00024 0.00065 0.00147 0.00011

4.1e-05 0.000123 0.000247 0.000436 2.9e-06
2000 0.00014 0.00039 0.00092

5.66e-05 0.000105 0.000197
2500 5e-05 0.00014 0.00035

7.35e-06 1.32e-05 2.28e-05
3000 0.00016

2.72e-06
3300 0.00011

8.79e-07

10.2 Final selection

This section contains the reference tables for the final selection criteria and the corresponding
observed limits for the eej and the µµj channels.
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Table 4: The eej channel threshold values for ST, Mej, and Mej,gen vs. LQ mass (for all cou-
plings), and the corresponding observed limits.

MLQ ST threshold Mej threshold Mej,gen threshold Observed limit on σres
(GeV) (GeV) (GeV) (GeV) (pb)

300 250 200 200 0.16
400 320 300 266 0.07
500 400 400 333 0.033
600 480 500 400 0.017
700 560 600 466 0.012
800 640 700 533 0.0067
900 720 800 600 0.0049
1000 800 900 666 0.0046
1200 900 1100 800 0.0019
1400 900 1300 933 0.0019
1600 900 1500 1066 0.00049
1800 900 1700 1200 0.00051
2000 900 1900 1333 0.00053
2500 900 1900 1666 0.00048
3000 900 1900 2000 0.00044
3300 900 1900 2200 0.00046

Table 5: The µµj channel threshold values for ST, Mµj, and Mµj,gen vs. LQ mass, and the corre-
sponding observed limits.

MLQ ST threshold Mµj threshold Mµj,gen threshold Observed limit on σres
(GeV) (GeV) (GeV) (GeV) (pb)

300 300 200 225 0.096
400 400 300 300 0.032
500 500 400 375 0.019
600 600 500 450 0.0092
700 700 600 525 0.0061
800 800 700 600 0.0046
900 900 800 675 0.0046
1000 1000 800 750 0.0042
1200 1000 800 900 0.004
1400 1000 800 1050 0.0049
1600 1000 800 1200 0.0056
1800 1000 800 1350 0.0054
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10.3 Event yields

This section contains tables of data, background, and signal yields after the final selection.
Event counts vary between the two channels due to differences in the optimized thresholds
for ST and M`j as well as differences in the electron and muon efficiencies. The first listed
uncertainty is statistical, the second is systematic; in cases where only one uncertainty is listed
it is statistical.

Table 6: Data and background yields after final selection for the eej channel for first-generation
LQs, shown with statistical and systematic uncertainties. “Other backgrounds” refers to dibo-
son+jets, W+ jets, single-top quark, and QCD. The values do not change above 2000 GeV.

MLQ(GeV) Data Total background Z/γ∗ + jets tt Other backgrounds
300 3007 2830± 40± 170 1362± 19 1238± 27 230± 15
400 1766 1660± 30± 110 873± 15 637± 19 151± 12
500 807 736± 18± 49 409.8± 9.6 251± 12 75.6± 8.6
600 370 329± 12± 24 192.9± 6.3 102.7± 7.9 33.3± 5.8
700 186 149± 8± 12 91.6± 4.1 40.9± 4.9 16.7± 4.2
800 91 73.7± 5.6± 7.0 46.3± 2.8 21.1± 3.5 6.3± 3.3
900 46 36.9± 3.4± 6.6 23.9± 1.9 7.6± 2.1 5.5± 1.9

1000 28 18.3± 2.5± 4.8 11.7± 1.3 3.7± 1.5 2.9± 1.5
1200 7 5.2± 1.6± 1.8 3.17± 0.61 0.39+0.53

−0.39 1.6± 1.3

1400 4 1.8± 1.3± 1.5 1.0± 0.31 0.0+0.41
−0.0 0.8+1.2

−0.8

1600 0 0.2+1.2
−0.2

+0.4
−0.2 0.17± 0.12 0.0+0.41

−0.0 0.1+1.2
−0.1

1800 0 0.0+1.3
−0.0 ± 0.0 0.0+0.22

−0.0 0.0+0.41
−0.0 0.0+1.2

−0.0

2000 0 0.0+1.3
−0.0 ± 0.0 0.0+0.22

−0.0 0.0+0.41
−0.0 0.0+1.2

−0.0

Table 7: Signal yields after final selection in the eej channel for first-generation LQs shown with
statistical and systematic uncertainties, for different values of λ and for β = 1.0.

MLQ λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0
(GeV)

300 3540± 60± 200 7880± 130± 420 14390± 240± 820 22600± 400± 1200
400 1577± 22± 85 3600± 50± 190 6330± 80± 340 9990± 150± 530
500 670± 10± 160 1504± 18± 85 2670± 30± 140 4270± 60± 210
600 289± 3± 18 666± 8± 33 1188± 14± 76 1920± 30± 100
700 138.1± 1.6± 6.2 320± 4± 15 559± 7± 27 885± 12± 41
800 67.8± 0.8± 3.3 158.2± 1.8± 6.5 275± 3± 12 446± 6± 19
900 35.9± 0.4± 1.4 82.5± 0.9± 3.3 145.7± 1.8± 5.6 231± 3± 11
1000 19.26± 0.22± 0.88 43.6± 0.5± 1.8 77.9± 1.0± 3.1 118.3± 1.8± 4.6
1200 6.14± 0.07± 0.25 13.8± 0.2± 1.2 25.44± 0.35± 0.98 39.7± 0.6± 1.9
1400 2.2± 0.0± 0.2 5.07± 0.07± 0.28 9.13± 0.14± 0.58 13.78± 0.26± 0.88
1600 0.8± 0.0± 0.1 1.89± 0.03± 0.15 3.3± 0.06± 0.26 5.24± 0.12± 0.46
1800 0.29± 0.0± 0.03 0.76± 0.01± 0.08 1.31± 0.03± 0.13 2.02± 0.06± 0.24
2000 0.31± 0.01± 0.04 0.497± 0.014± 0.071 0.81± 0.03± 0.12
2500 0.039± 0.001± 0.032 0.064± 0.003± 0.016 0.102± 0.006± 0.023
3000 0.0134± 0.0015± 0.0029
3300 0.004± 0.001± 0.001
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Table 8: Data, signal, and background yields after final selection in the µµj channel shown with
statistical and total systematic uncertainties, for λ = 1.0 and β = 1.0. “Other backgrounds”
refers to diboson+jets, W+ jets, single-top quark, and QCD.

MLQ(GeV) Signal Data Total background Z/γ∗ + jets tt Other backgrounds
300 2130± 30± 290 3036 3120± 40± 370 1541± 20 1362± 32 214± 15
400 721± 9± 91 1371 1440± 30± 170 774± 14 548± 21 118± 11
500 228± 3± 27 558 577± 17± 75 340.7± 8.6 182± 12 54.3± 8.1
600 77.1± 1.1± 9.5 238 246± 10± 32 155.6± 5.6 73.8± 7.7 16.4± 4.3
700 28.0± 0.5± 3.7 100 102± 6± 14 70.1± 3.5 22.3± 4.3 9.5± 2.7
800 10.7± 0.2± 1.6 48 52.3± 4.7± 7.6 32.3± 2.3 12.3± 3.2 7.7± 2.6
900 4.67± 0.1± 0.84 27 25.7± 3.5± 4.6 14.9± 1.5 4.8± 2.0 5.9± 2.5

1000 2.1± 0.05± 0.46 17 15.5± 3.0± 3.3 7.6± 1.1 2.6± 1.5 5.3± 2.4
1200 0.7± 0.02± 0.22 17 15.5± 3.0± 3.3 7.6± 1.1 2.6± 1.5 5.3± 2.4
1400 0.195± 0.008± 0.088 17 15.5± 3.0± 3.3 7.6± 1.1 2.6± 1.5 5.3± 2.4
1600 0.06± 0.003± 0.032 17 15.5± 3.0± 3.3 7.6± 1.1 2.6± 1.5 5.3± 2.4
1800 0.0135± 0.0012± 0.0066 17 15.5± 3.0± 3.3 7.6± 1.1 2.6± 1.5 5.3± 2.4
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G. Abbiendia, C. Battilana2, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia ,b,
L. Brigliadoria ,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa ,b, F.R. Cavalloa, G. Codispotia ,b,
M. Cuffiania ,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa ,b, P. Giacomellia,
C. Grandia, L. Guiduccia ,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa ,b,
A. Perrottaa, A.M. Rossia ,b, T. Rovellia ,b, G.P. Sirolia ,b, N. Tosia ,b, R. Travaglinia ,b
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Trento, Italy
P. Azzia,2, D. Biselloa ,b, A. Brancaa,b, R. Carlina ,b, A. Carvalho Antunes De Oliveiraa ,b,
P. Checchiaa, M. Dall’Ossoa,b ,2, T. Dorigoa, F. Fanzagoa, F. Gasparinia ,b, U. Gasparinia ,b,
F. Gonellaa, A. Gozzelinoa, K. Kanishcheva ,c, S. Lacapraraa, G. Marona ,30, F. Montecassianoa,
M. Passaseoa, J. Pazzinia,b, M. Pegoraroa, N. Pozzobona,b, P. Ronchesea,b, M. Tosia,b, S. Vaninia ,b,
S. Venturaa, A. Zucchettaa ,b ,2, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
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